
Klemens Morgenstern

E-Mail
contact@klemens.dev

Github
klemens-morgenstern

Klemens D. Morgenstern
Software Developer

About me
I have a Master’s Degree in Electrical Engineering, but a strong
passion for C++. Since getting my degree I almost exclusively
developed software, and became contributor to boost with boost.process.
Because of my electrical engineering background, I like my pro-
gramming environments to be low-level especially bare-metal.

Education
2006 - 2010, HTW Berlin
Bachelor of Engingeering in Electronical Engineering
2010 - 2013, TU Chemnitz
Master of Science in Microsystems and Microelektronics

Experience
2009 - 2013, Parttime jobs & Thesis Papers

• C & C++ for Stm32-Controllers
• Gui development (.net & C++)
• Kalman filters

2013-2016, Software Developer, EDC Electronic Design Chem-
nitz GmbH

• ASIC development tool
• STIL Parser (spirit.qi)
• Unit Testing (Tessy)

2017- now, Independent Contractor

Skills
Languages
◦ C++ ◦ C ◦ Python
◦ C# ◦ Typescript ◦ SQL

Libraries & Tools
◦ boost ◦ pybind11 ◦ Qt
◦ gcc ◦ clang ◦ boost.build
◦ node.js ◦ PostgreSQL ◦ GraphQL

Open-Source Contributions
• boost.process
• boost.dll
• metal.test

Interests
• Modern C++
• Embedded Systems
• System Programming
• Template Meta Programming
• Build Systems

mailto:contact@klemens.dev
mailto:contact@klemens.dev
contact@klemens.dev
https://www.github.com/klemens-morgenstern
https://www.github.com/klemens-morgenstern
http://www.boost.org
https://github.com/klemens-morgenstern/boost-process
www.ed-chemnitz.de
www.ed-chemnitz.de
http://grouper.ieee.org/groups/1450/index.html
http://www.boost.org/doc/libs/1_64_0/libs/spirit/doc/html/index.html
https://github.com/klemens-morgenstern/boost-process
http://www.boost.org/doc/libs/1_64_0/doc/html/boost_dll/mangled_import.html
https://github.com/klemens-morgenstern/metal.test


Klemens Morgenstern

E-Mail
contact@klemens.dev

Github
klemens-morgenstern

Project lead

Qyro, ASIC development tool, closed-source, 2013-2017
For the ASIC development at EDC, I developed a tool to read
and write data from it’s registers, using a custom SPI (done
through an FTDI chip). Since most of the ASICs were for sen-
sors, it also had to support high data rates and visualization (Qt,
qwt). In addition it had a plugin-system to select the proper
ASIC-library and a json-rpc interface for script extensions. The
latter was delivered with client code in C# (for import in Lab-
View), Python and Java (for easy usage in Matlab).
Tools
◦ C++ ◦ Qt & qwt ◦ FTDI/SPI
◦ Json-Rpc ◦ Python ◦ Java & C#

boost.process, 2016-2018
Boost 1.64 finally contains a process library after over 10 years
of development. I took over the development in 2016, redid the
interface and a huge part of the implementation, while keeping
many design decision of previous versions. The main challenge
was to find the concepts shared between the different platforms
and implement low-overhead abstractions, in order to create a
portable library.
The library can be found here and you can listen to me speak
about it here.
Tools
◦ C++ 11 ◦ boost.asio ◦ posix & win-api

metal.test, 2016-2018
As part of starting my own venture, I am currently creating a
toolset for embedded software development and testing. The
idea is to as much as possible through the debugger, which is
why we provide a debugger-runner, i.e. a tool that executes the
debugger automatically and interacts with it. This then loads
plugins which add breakpoints to get more diagnostic data. The
best example is our test backend, which will give a binray test-
result when executed on it’s own, but output very detailed in-
formation when used with the debugger-runner.
The toolset is currently in beta and can be found here

Tools
◦ C++14 ◦ gdb ◦ unit-tests
◦ ld ◦ pegtl ◦ python

Experimental Measurement System, Confidential, 2010
I wrote an embedded software in C for the development of a
experimental measurement process„ which had to comply high
requirements like real-time. The code was highly optimized,
which included counting the assembly instructions.
Tools
◦ C ◦ stm32f4 ◦ Keil µVision

mailto:contact@klemens.dev
mailto:contact@klemens.dev
contact@klemens.dev
https://www.github.com/klemens-morgenstern
https://www.github.com/klemens-morgenstern
https://github.com/klemens-morgenstern/boost-process
http://cppcast.com/2016/09/klemens-morgenstern/
https://github.com/klemens-morgenstern/metal.test


Klemens Morgenstern

E-Mail
contact@klemens.dev

Github
klemens-morgenstern

Contributions
boost.dll, 2016
I’ve written an addition for boost.dll that allows the import of
mangled C++ Symbols at runtime.
Tools
◦ C++14 ◦ MSVC ABI ◦ Itanium ABI

pybind11, 2016
I’ve written and proposed an extension for pybind11 that al-
lows executing Python code from C++, which was merged
with some modifications.
Tools
◦ C++11 ◦ Python

Other C++ Problems, 2012-2018
◦ Run-time to compile-time operations (C++ constexpr, templates)
◦ Fixed-point template class
◦ Lock- & allocation-free (multithreaded) buffer
◦ Static polymorphism

Stm32f4, 2010-2018
◦ Coroutine Library & a Talk at Embo++ 2018
◦ Manual RS-485 implementation using the DMA (C)
◦ Object-based C++ handler for interrupts
◦ C++ Wrappers for HAL-drivers
◦ RAII for hardware initialization

Miscellaneous, 2014-2017
◦ Code generator in Java with a C++ Parser based on ANTLR
◦ Boost.Build Extensions

mailto:contact@klemens.dev
mailto:contact@klemens.dev
contact@klemens.dev
https://www.github.com/klemens-morgenstern
https://www.github.com/klemens-morgenstern

