Klemens Morgenstern Klemens D. MorgenStern

. Software Developer

: About me

- I have a Master’s Degree in Electrical Engineering, but a strong

- passion for C++. Since getting my degree I almost exclusively

- developed software, and became contributor to boost with boost.process.
- Because of my electrical engineering background, I like my pro-

- gramming environments to be low-level especially bare-metal.

' Education

- 2006 - 2010, HTW Berlin
- Bachelor of Engingeering in Electronical Engineering

E.Mail - 2010 - 2013, TU Chemnitz

contact@klemens.dev - Master of Science in Microsystems and Microelektronics

Github - pyperience

2009 - 2013, Parttime jobs & Thesis Papers
* C & C++ for Stm32-Controllers
* Gui development (.net & C++)
e Kalman filters

: 2013-2016, Software Developer, EDC Electronic Design Chem-
- nitz GmbH
-« ASIC development tool

* STIL Parser (spirit.qi)

* Unit Testing (Tessy)

klemens-morgenstern

- 2017- now, Independent Contractor

- Skills

. Languages
: o C4++ o C o Python
o C# o Typescript o SQL
- Libraries & Tools
o boost o pybind11 o Qt
o gce o clang o boost.build
o node.js o PostgreSQL o GraphQL

Open-Source Contributions
-« boost.process

* boost.dll

* metal.test

 Interests

- Modern C++

Embedded Systems

System Programming
Template Meta Programming
Build Systems

mailto:contact@klemens.dev
mailto:contact@klemens.dev
contact@klemens.dev
https://www.github.com/klemens-morgenstern
https://www.github.com/klemens-morgenstern
http://www.boost.org
https://github.com/klemens-morgenstern/boost-process
www.ed-chemnitz.de
www.ed-chemnitz.de
http://grouper.ieee.org/groups/1450/index.html
http://www.boost.org/doc/libs/1_64_0/libs/spirit/doc/html/index.html
https://github.com/klemens-morgenstern/boost-process
http://www.boost.org/doc/libs/1_64_0/doc/html/boost_dll/mangled_import.html
https://github.com/klemens-morgenstern/metal.test

Project lead

Klemens Morgenstern -

: Qyro, ASIC development tool, closed-source, 2013-2017

. For the ASIC development at EDC, I developed a tool to read
- and write data from it’s registers, using a custom SPI (done
- through an FTDI chip). Since most of the ASICs were for sen-
- sors, it also had to support high data rates and visualization (Qt,
- qwt). In addition it had a plugin-system to select the proper
- ASIC-library and a json-rpc interface for script extensions. The
- latter was delivered with client code in C# (for import in Lab-
- View), Python and Java (for easy usage in Matlab).

 Tools
- o C++ o Qt & qwt o FTDI/SPI
o Json-Rpc o Python o Java & C#

boost.process, 2016-2018

E-Mail - Boost 1.64 finally contains a process library after over 10 years
contact@klemens.dev - ©f development. I took over the development in 2016, redid the
- interface and a huge part of the implementation, while keeping
Github - many design decision of previous versions. The main challenge
klemens-morgenstern : was to find the concepts shared between the different platforms
- and implement low-overhead abstractions, in order to create a

- portable library.
: The library can be found here and you can listen to me speak

- about it here.

- Tools
o C++ 11 o boost.asio o posix & win-api

: metal.test, 2016-2018

- As part of starting my own venture, [am currently creating a
- toolset for embedded software development and testing. The
- idea is to as much as possible through the debugger, which is
: why we provide a debugger-runner, i.e. a tool that executes the
- debugger automatically and interacts with it. This then loads
- plugins which add breakpoints to get more diagnostic data. The
- best example is our test backend, which will give a binray test-
- result when executed on it’s own, but output very detailed in-
- formation when used with the debugger-runner.

- The toolset is currently in beta and can be found here

‘ Tools

o C++14 o gdb O unit-tests
o 1d o pegtl o python

: Experimental Measurement System, Confidential, 2010

. I wrote an embedded software in C for the development of a
- experimental measurement process,, which had to comply high
- requirements like real-time. The code was highly optimized,
: which included counting the assembly instructions.

- Tools
"o C o stm32f4 o Keil pVision

mailto:contact@klemens.dev
mailto:contact@klemens.dev
contact@klemens.dev
https://www.github.com/klemens-morgenstern
https://www.github.com/klemens-morgenstern
https://github.com/klemens-morgenstern/boost-process
http://cppcast.com/2016/09/klemens-morgenstern/
https://github.com/klemens-morgenstern/metal.test

. Contributions

Klemens Morgenstern - boost.dll, 2016

E-Mail -
contact@klemens.dev

- 've written an addition for boost.dll that allows the import of
- mangled C++ Symbols at runtime.

Tools
o C++14 o MSVC ABI o Itanium ABI

- pybind11, 2016

- P've written and proposed an extension for pybind11 that al-
- lows executing Python code from C++, which was merged
- with some modifications.

Tools
o C++11 o Python

: Other C+ + Problems, 2012-2018

. o Run-time to compile-time operations (C+ + constexpr, templates)
o Fixed-point template class

o Lock- & allocation-free (multithreaded) buffer

o Static polymorphism

Github :

klemens-morgenstern

- Stm32f4, 2010-2018

: Coroutine Library & a Talk at Embo++ 2018
Manual RS-485 implementation using the DMA (C)
Object-based C+ + handler for interrupts

C++ Wrappers for HAL-drivers

RAII for hardware initialization

- Miscellaneous, 2014-2017
o Code generator in Java with a C++ Parser based on ANTLR
o Boost.Build Extensions

(@]

O O O O

mailto:contact@klemens.dev
mailto:contact@klemens.dev
contact@klemens.dev
https://www.github.com/klemens-morgenstern
https://www.github.com/klemens-morgenstern

